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Weakly nematic–highly nematic phase transitions in main-chain liquid-crystalline polymers

Akihiko Matsuyama* and Tadaya Kato
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~Received 16 December 1997; revised manuscript received 12 February 1998!

A mean field theory is introduced to describe the nematic-isotropic phase transitions~NIT! of main-chain
liquid-crystalline polymers~MLCPs! which consist of rigid mesogens and spacers with various degrees of
flexibility. We here assume that two neighboring bonds on the spacers have either bent or straightened con-
formations and the straightened conformation gives rise to a rigid rodlike shape. The theory takes into account
not only the nematic ordering of mesogens but also the partial ordering of spacer segments in the nematic
phase. On the basis of the Onsager type excluded volume interactions and the Maier-Saupe model for
orientational-dependent attractive interactions between rigid segments, we derive the free energy of the MLCPs
in melts. The NIT temperature, the order parameter of mesogens, and that of spacers are examined as a
function of the spacer length, the flexibility of spacers, and the strength of the anisotropic interactions. We also
derive the Landau–de Gennes expansion of our free energy. We find that the NIT temperatureTNI of a MLCP
with semiflexible spacers has a minimum as a function of the spacer lengthns . At small values ofns , we have
a weakly nematic phase which is mostly formed by the ordering of the mesogens and the spacers play a
softening role. At large values ofns , we have a highly nematic phase where the straightened segments on the
spacers and the mesogens are highly ordered and the spacers play a stiffening role. The two different nematic
phases are discussed in the phase diagrams of the temperature-spacer length plane.@S1063-651X~98!03007-4#

PACS number~s!: 61.30.Cz, 64.70.Md, 61.82.Pv
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I. INTRODUCTION

Thermotropic liquid-crystalline polymers have been
vestigated as new materials with remarkable mechanical,
tical, and electrical properties. Main-chain liquid-crystalli
polymers~MLCPs! consist of rigid mesogens connected
spacers with various degrees of flexibility, such as methyl
and ethylene glycol groups. The flexibility of the MLCP ca
be regulated by using different chemical structures or diff
ent length of the mesogens and spacers. The performanc
the MLCP and the nematic-isotropic phase transition~NIT!
are closely related to these molecular parameters@1–3#.

Some experimental studies have suggested that the s
ers play an important role in determining the degree of or
nization in a liquid-crystalline mesophase@4–10#. NMR
studies on copolyesters~4,48-dihydroxy, a, a8-dimethyl-
benzalazine! over a wide temperature range have addres
the existence of strong correlations between the meso
and spacers in the nematic phase@7,9#. Then the accounting
for the partial ordering of spacers in the nematic phase
necessary in the theoretical treatment of MLCP systems

Liquid crystals of low molecular weight are modeled b
rigid rodlike molecules interacting with each other throu
the hard-core repulsions@11# and the attractive intermolecu
lar interactions@12,13#. The problems of the liquid crystal
linity in the systems containing liquid-crystalline polyme
are treated by several theoretical models such as lattice m
els @14–19#, elastic wormlike chain models@20–27#, freely
jointed models@28#, and persistent chains@29#. These theo-
ries, however, cannot describe the orientational ordering
spacers in a nematic phase because the model polymers
sist of homogeneous chains. In order to describe the MLC

*Author to whom correspondence should be addressed.
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with flexible and rigid segments, we must consider that
two constituent monomers differ in flexibility@30–34#. Some
years ago, based on the Matheson-Flory theory for MLC
@19#, Vasilenkoet al. @30# calculated the free energy of ML
CPs, in which they take into account the partial ordering
flexible spacers and focused on the NIT in athermal me
Wang and Warner@32# presented a molecular model to d
scribe nonhomogeneous MLCPs, in which the MLCP
composed in sequence of rigid rodlike mesogen units
spacers denoted by a wormlike model. A lattice theory p
posed by Flory@14# has considered the isotropic solution
semiflexible polymer chains in which two neighboring bon
on the chain have either bent or straightened conformatio
To describe the NIT of the semiflexible polymers, we r
cently presented a simple mean field model combining
Flory theory with the Maier-Saupe model for the orientatio
dependent attractive interactions between straightened b
@35#.

In this paper we extend the previous model@35# to the
melts of MLCPs, which consist of rigid mesogens and sp
ers with various degrees of flexibility. We here assume t
the two neighboring bonds on the spacers have either be
straightened conformations and the straightened confor
tion gives rise to a rigid rodlike shape. The theory takes i
account both the nematic ordering of mesogens and the
tial ordering of spacer segments in the nematic phase. On
basis of the Onsager theory for hard-core repulsive inte
tions @11# and the Maier-Saupe model for orientationa
dependent attractive interactions@12,13# between straight-
ened segments, we derive the free energy of the MLCP
melts. The nematic-isotropic transitions, the order param
of mesogens, and that of spacers are examined as a fun
of the spacer length, the flexibility of spacers, and t
strength of the anisotropic interactions. We also derive
Landau–de Gennes expansion of our free energy.
585 © 1998 The American Physical Society
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586 PRE 58AKIHIKO MATSUYAMA AND TADAYA KATO
The paper is organized as follows. We first describe
free energy of MLCPs in melts, in which we take into a
count the three physical parameters; the fraction of strai
ened segments on the spacers, the orientational order pa
eter of mesogens, and that of spacers. In Sec. III,
minimizing the free energy, we obtain the values of the
three parameters in thermal equilibrium conditions. In S
IV we show the detailed numerical results. In the Append
Landau–de Gennes expansion of our free energy is der
and the approximate formulas for the NIT temperature a
the order parameter are given as a function of spacer len
the flexibility of spacers, and temperature.

II. FREE ENERGY FOR MELTS OF MAIN-CHAIN
LIQUID-CRYSTALLINE POLYMERS

We consider a melt of a main-chain liquid-crystallin
polymer. The repeating units in the MLCP consist of a rig
mesogenic unit with axial rationm and spacer units which
have the numberns of segments. The total number of se
ments on the MLCP isn5(nm1ns)t, wheret is the number
of repeating units.~See Fig. 1.! In order to take into accoun
the partial orientational ordering of spacers in a nema
phase, we here assume that the two neighboring bonds o
spacers have either bent or straightened conformations
the conformational free energy of the straightened bond
ue0u less than that of the bent bonds. For example, the en
difference between the trans and the gauch state of CuC
bonds onn-alkanes gives values of the order of the therm
energy @36# and so the straightened state of the bonds
energetically favored~however, it is entropically unfavor
able!. To describe the nematic-isotropic phase transition
the MLCP, we here assume that the straightened confor
tion gives rise to a rigid rodlike shape. Then the orientatio
ordering~nematic behavior! of the straightened bonds on th
spacers as well as the rigid mesogens can be induced by
the excluded volume interactions and the orientation
dependent attractive interactions. Hereafter we call the s
ments in straightened bonds and that in bent bonds ‘‘rig
and ‘‘flexible’’ segments, respectively.

The free energy of the MLCP in melts can be given b

F5Fbent1Fnem. ~2.1!

The first termFbent shows the free energy change needed
straighten bent bonds on the spacers. In our systems,Fbent is
given by

FIG. 1. Model of a main-chain liquid-crystalline polyme
~MLCP!. The repeating unit in the MLCP consists of rigid
mesogenic groups whose axial ratio isnm and spacer groups con
tainingns segments. The total number of segments on the MLC
n5(nm1ns)t, wheret is the number of repeating units. The sym
bols d and s show the segments on the straightened and b
bonds on the spacers, respectively.
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bFbent5nrt~b f 0!2Scomb/kB2DSconf/kB , ~2.2!

where b[1/kBT, T is the absolute temperature,kB is the
Boltzmann constant,f 0 is the local free energy chang
needed to straighten a bent bond, andnr shows the number
of rigid segments on spacers. The second term in Eq.~2.2! is
the combinatorial entropy related to the number of ways
selectnr segments out of the numberns of the spacer seg
ments and is given by

Scomb/kB5t ln
ns!

nr ! ~ns2nr !!
. ~2.3!

By using Stirling’s approximation, Eq.~2.3! can be rewritten
as

Scomb/kB52tns@x ln x1~12x!ln~12x!#, ~2.4!

where

x[nr /ns ~2.5!

shows the fraction of rigid~straightened! segments on the
spacers. The third term in Eq.~2.2! shows the change in
conformational entropy of chains. According to Flory’s la
tice theory, the conformational entropySconf@m# of a flexible
chain withm flexible segments is given by@37#

Sconf@m#/kB5 lnFmz~z21!m22

s exp~m21! G , ~2.6!

wherez is the lattice coordination number ands is the sym-
metry number of the chain. Equation~2.6! is the entropy gain
to bring a chain from the hypothetical crystalline~straight-
ened! state to a flexible amorphous state. When thenr seg-
ments out of thens segments on a flexible spacer are r
placed by rigid segments, we have the conformatio
entropy changeDSconf which is given by

DSconf5Sconf@~ns2nr !t#2Sconf@nst#. ~2.7!

This entropyDSconf was omitted in the earlier work@35#.
Substituting Eq.~2.6! into Eq. ~2.7! we obtain

DSconf/kB52 lnF ns

ns2nr
S z21

e D nr tG . ~2.8!

From Eqs.~2.4! and ~2.8!, the free energy~2.2! can be ex-
pressed as

bFbent5npFxb f 01x lnS z21

e D
2

1

nst
ln~12x!1x ln x1~12x!ln~12x!G ,

~2.9!

where

p[ns /~nm1ns!5nst/n ~2.10!

shows the fraction of the spacer segments on the repea
unit.
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The second termFnem in Eq. ~2.1! shows the free energ
for the nematic ordering. On the basis of the excluded v
ume interactions @11# and the orientational-depende
~Maier-Saupe! interactions@12,13#, we consider three cou
pling terms of the anisotropic interactions. Letnmm be the
orientational-dependent~Maier-Saupe! interactions between
mesogen segments,nms be that between a mesogen and
rigid segment on spacers, andnss be that between rigid seg
ments on spacers. The volume fractiongr of the rigid seg-
ments on the spacer is given by

gr5nrt/n5xp. ~2.11!

On the basis of both the Maier-Saupe model and the
sager theory, the free energy of the nematic ordering is gi
by @38#

bFnem5nF ~12p!

nm
E f m~u!ln 4p f m~u!dV

1
px

nr
E f s~u!ln 4p f s~u!dV2

1

2
nmmSm

2 ~12p!2

2nmsSmSs~12p!px2
1

2
nssSs

2p2x2

1~rmm21!~12p!212~rms21!~12p!px

1~rss21!p2x2G , ~2.12!

wheredV[2p sinudu, andu is the angle between the rigi
segments and the director of the orienting field. Thef m(u)
and f s(u) show the orientational distribution functions of th
mesogen segments and that of the rigid segments on
spacers, respectively. The first two terms represent the
crease of entropy due to the nematic ordering of the m
sogens and the rigid segments on the spacers. The ori
tional order parameterSm of the mesogen segments is give
by

Sm5E P2~cosu! f m~u!dV, ~2.13!

and the orientational order parameterSs of the rigid seg-
ments on the spacers is given by

Ss5E P2~cosu! f s~u!dV, ~2.14!

where P2(cosu)[3(cos2u21/3)/2. The last three terms i
Eq. ~2.12! show the excluded volume interactions betwe
rigid segments and the functionr i j ( i , j 5m,s) is given by
@11#

r i j 5
4

pE E sin g~u,u8! f i~u! f j~u8!dVdV8. ~2.15!

In the isotropic phase, we havef i(u)51/(4p) andr i j 51.
l-

n-
n

he
e-
-
ta-

n

III. NEMATIC ORDERING OF MESOGENS
AND SPACERS

By minimizing the free energy~2.1!, we can obtain the
values of the order parametersSm , Ss , and the fractionx in
thermal equilibrium conditions.

The orientational distribution functionf m(u) of the me-
sogen segments is determined by the free energy~2.12! with
respect to this function:@]Fnem/] f m(u)#x, f s

50. This leads
to the integral equation

ln4p f m~u!5Cm1nm@nmmSm~12p!1nmsSspx#P2~cosu!

2
8

p
nmF ~12p!E sin g~u,u8! f m~u8!dV8

1pxE sin g~u,u8! f s~u8!dV8G . ~3.1!

Similarly, the distribution functionf s(u) of the rigid seg-
ments on the spacers is determined by@]Fnem/] f s(u)#x, f m

50. We then obtain

ln 4p f s~u!5Cs1nr@nmsSm~12p!1nssSspx#P2~cosu!

2
8

p
nrF ~12p!E sin g~u,u8! f m~u8!dV8

1pxE sin g~u,u8! f s~u8!dV8G , ~3.2!

whereCm andCs are constants, which are determined by t
normalization conditions

E f i~u!dV51, ~3.3!

i 5m,s. We here expand the kernel sing in Legendre poly-
nomials:

sin g5
p

4
2

5p

32
P2~cosu!P2~cosu8!. ~3.4!

Substituting Eq.~3.4! into Eqs.~3.1! and~3.2!, we obtain the
orientational distribution functions

f m~u!5
1

Zm
exp@hmP2~cosu!#, ~3.5!

hm[nm@~nmm1 5
4 !Sm~12p!1~nms1

5
4 !Sspx# ~3.6!

for the mesogen segments and

f s~u!5
1

Zs
exp@hsP2~cosu!#, ~3.7!

hs[nsx@~nms1
5
4 !Sm~12p!1~nss1

5
4 !Sspx# ~3.8!

for the rigid segments on the spacers, where the const
Zi( i 5m,s) are determined by the normalization conditio
~3.3!. The termsn i j and 5/4 in Eqs.~3.6! and ~3.8! corre-
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spond to the attractive and excluded volume interactions
tween rigid segments. From Eqs.~3.3!, ~3.5!, and ~3.7!, the
constantZi is given by

Zm52pI 0@hm#, ~3.9!

Zs52pI 0@hs#, ~3.10!

where the functionI 0@h i # is defined as

I q@h i #[E
0

1

@ 3
2 ~cos2u2 1

3 !#qexp@h i P2~cosu!#d~cosu!,

~3.11!

q50,1,2, . . . . Substituting Eqs.~3.5! and ~3.7! into Eqs.
~2.13! and ~2.14!, we obtain two self-consistency equatio
for the two order parametersSm andSs :

Sm5I 1@hm#/I 0@hm#, ~3.12!

Ss5I 1@hs#/I 0@hs#, ~3.13!

and the average value of the order parameters is given

S5Sm~12p!1Sspx. ~3.14!

The functions i[* f i(u)ln4pfi(u)dV and r i j in Eq. ~2.12!
are now given as a function of order parametersSm andSs as
follows:

s i5h iSi2 ln I 0@h i #, ~3.15!
e

e-
r i j 512

5

8
SiSj , ~3.16!

i 5m,s. Substituting Eqs.~3.15! and ~3.16! into Eq. ~2.12!,
the free energy for the nematic ordering is given by

bFnem/n5
1

2S nmm1
5

4DSm
2 ~12p!2

1S nms1
5

4D p~12p!xSmSs1
1

2S nss1
5

4DSs
2p2x2

2
12p

nm
ln I 0@hm#2

p

ns
ln I 0@hs#. ~3.17!

The fractionx of rigid segments on the spacers is det
mined by minimizing the free energy~2.1! with respect tox:
(]F/]x)Sm ,Ss

50. From Eqs.~2.9! and ~3.17!, we obtain

~nss1
5
4 !pxSs

21~nms1
5
4 !~12p!SmSs2D~x!50,

~3.18!

with

D~x![ lnF x

~12x!lG1
1

tns~12x!
.0, ~3.19!

and the solution forSs is given by
Ss5
1

2S nss1
5

4D px
H 2S nms1

5

4D ~12p!Sm1AF S nms1
5

4D ~12p!SmG2

14S nss1
5

4D pxD~x!J , ~3.20!
e

he

of
wherel is defined as

l[S e

z21Dexp@2b f 0#. ~3.21!

By solving the coupled equations~3.12!, ~3.13!, and
~3.20!, we can obtain the values of the orientational ord
parametersSm , Ss , and the fractionx of rigid segments on
the spacers as a function of temperature. From Eq.~3.20! the
order parameterSs is given as a function ofSm andx and so
we only solve the coupled equations~3.12! and~3.13! for Sm
andx. In the isotropic phase (Sm5Ss50), the value ofx is
given byD(x)50:

x5
l

l1exp@1/tns~12x!#
. ~3.22!

We further split the local free energy differencef 0 in Eq.
~3.21! into two parts:

f 05e02Ts0 , ~3.23!
r

wheres0(5kBlnv0) is the local entropy loss ande0(,0) the
energy change needed to straighten a bent bond@15#. The
larger values ofe0 correspond to the stiffer spacers. Thev0
is defined asv0[v1 /v2 where v1(v2) is the number of
states of a straightened~bent! bond. If the segments ar
placed on a lattice of coordination numberz, we havev0
51/(z22). The stiffness of the spacer is controlled by t
e0. The most flexible spacer chain is realized whene050.
Substituting Eq.~3.23! into Eq. ~3.21! we obtain

l5v exp@2be0#, ~3.24!

v[e/@(z21)(z22)#. The free energy per unit segment
our system can be expressed as

bF/n5bh2s/kB , ~3.25!

where the entropys is given by
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2s/kB5pF2x ln v2
1

nst
ln~12x!1~12x!ln~12x!

1x ln xG1S nmm1
5

4DSm
2 ~12p!2

12S nms1
5

4DSmSsp~12p!x1S nss1
5

4DSs
2p2x2

2
12p

nm
ln I 0@hm#2

p

ns
ln I 0@hs#, ~3.26!

andh is the enthalpy:

bh5be0px2 1
2 ~nmm1 5

4 !Sm
2 ~12p!22~nms1

5
4 !SmSsp

3~12p!x2 1
2 ~nss1

5
4 !Ss

2p2x2. ~3.27!

Whenp50, we obtain the free energy for rigid rodlike mo
ecules without spacer chains@38#:

bFnem/nm5
1

2S nmm1
5

4DSm
2 2

1

nm
ln I 0@hm#. ~3.28!

In our numerical calculations, we here define the ratioj
of the anisotropic interaction as

j[nss/nmm, ~3.29!

and assume that the orientational-dependent interactionnms
between mesogen and spacer segments is proportional t
square root of the product ofnmm andnss @39,40#:

nms5bAnmmnss, ~3.30!

whereb is the constant. We then obtain

nss5jnmm, ~3.31!

nms5bAjnmm. ~3.32!

The orientational-dependent interaction parameternmm be-
tween rigid-mesogen segments is given to be inversely
portional to temperature@13#:

nmm5Ua /kBT. ~3.33!

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we calculate the equilibrium values of t
order parametersSm , Ss , and the fractionx of rigid seg-
ments on the spacers as a function of temperature. In
numerical calculations of Sec. III, we here definee
[ue0u/Ua . The values ofe0 and Ua are of the order of
thermal energy. In the following calculations we usee
52, v50.01, b51, andt5100 for a typical example.

Figure 2 shows the order parametersSm , Ss , S, and the
fraction x as a function of the reduced temperatureT/TNI ,
whereTNI is the NIT temperature. The curves are calcula
with j50.01 andnm54. The numberns of segments on the
spacer is changed from~a! to ~c!: ~a! ns54; ~b! ns58; ~c!
ns514. The solid curve refers to the order parameterSm of
the mesogens and the dash-dotted line shows the orde
the

o-

he

d

pa-

rameter Ss of rigid segments on the spacers. The sho
dashed line shows the average-order parameterS and the
dotted line corresponds to the fractionx of rigid segments on
the spacers. As temperature is decreased, the value ofx in-
creases and discontinuously changes at theTNI . For small
values ofns @Fig. 2~a!#, the values ofx andSs in the nematic
phase are small and the rigid segments on the spacers

FIG. 2. Order parametersSm ~solid line!, Ss ~dash-dotted line!,
the average order parameterS ~short-dashed line!, and the fractionx
~dotted line! of rigid segments on the spacers plotted against
reduced temperatureT/TNI with j50.01, nm54, and t5100.
The numberns of segments on the spacer is changed from~a! to ~c!:
~a! ns54; ~b! ns58; ~c! ns514.
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slightly ordered. The nematic phase is mostly stabilized
the orientational ordering of mesogens. For large values
ns @Fig. 2~b!#, however, the value ofx becomes large and th
order parameterSs is sharply increased with decreasing te
perature belowTNI , where the nematic ordering is enhanc
by the ordering of the spacers. As shown in Fig. 2~c!, the
rigid segments on the long spacers and the mesogens
highly ordered in the nematic phase, where the numbe
rigid segments on the spacers becomes larger than the
ratio (nm54) of the mesogens. The number of rigid se
ments on the spacers is given byxns . For example, we have
xns59.3 atT/TNI50.9.

Figure 3 shows the comparison of the theoretical calcu
tions with the observed order parameters. The open cir
~triangles! show the order parameter of mesogens~spacers!
reported for polyesters of 2,28-dimethyl-4,48-dihydroxy-
azoxybenzene@7#. Whenns56, the calculated order param
eters are mostly independent on temperature and qua
tively describe the experimental data. When the spa
length is large, the calculated order parameters are sha
increased with decreasing temperature.

Figure 4~a! shows the phase diagram on the temperatu
spacer length plane forj50.01. The solid line shows th
coexistence curve for the isotropic and nematic phases
small values ofns , the NIT temperatureTNI decreases with
increasing the spacer lengthns . At large ns , however, the
TNI slowly increases with increasingns . In this region, the
spacers increase the degree of nematic ordering in the
CPs. Figure 4~b! shows the order parameters and the fract
x calculated along the coexistence curve. At small value
ns , the values ofx and Ss along the coexistence curve a
small and the rigid segments on the spacers are only slig
ordered at theTNI . The nematic phase is mostly stabilize
by the orientational ordering of mesogens. In this sense,
spacer components play asofteningrole. The free energy o
the system is minimized by the softening rather than by
ordering of the short spacers. We here call this regio
weakly nematic phase. Further increasing the spacer le
ns , the values of the fractionx and the order parameterSs
along the coexistence curve are sharply increased with
creasingns . The long spacers promote the degree of nem
ordering in the MLCPs and so the NIT temperatureTNI
slowly increases with increasingns . In this sense, the spac

FIG. 3. Comparison of the theoretical calculations with the o
served order parameters for polyesters@7#.
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ers play astiffening role and the nematic ordering of th
system is enhanced by the partial ordering of the spacers
here call this region a highly nematic phase. These two
ferent nematic phases have also been predicted by Vasile
et al. @30#. They predicted the phase transition between
two different nematic phases depending on the fraction
bent bonds on the spacers and the fraction of spacer
ments in the repeating unit. As shown in Fig. 4~c!, the en-
tropy changeDsNI /(kBn) per unit segment at the NIT poin
decreases with increasing the spacer lengthns in the weakly
nematic phase, or the softening region. However, the entr

-

FIG. 4. Dependence on the spacer length of the NIT tempera
~a!, the order parameters at the NIT point~b!, and the entropy
change at the NIT point~c! for j50.01.
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change increases with increasingns in the highly nematic
phase, where the nematic ordering of the spacers gives l
contributions to the latent entropy at theTNI . The weakly
nematic phase continuously changes to the highly nem
one with increasing spacer length.

Figure 5 shows the dependence on the interaction r
j[nss/nmm of the order parameterS with nm54 and ns
56. The value ofj depends on the chemical structure of t
polymer molecules. As the strength of the anisotropic int
actionnss between the spacers is increased, the NIT temp
ture and the order parameter increase. Above a critical v
of j(50.75), we find a first-order phase transition betwe
two different nematic phases.

Figure 6 shows the dependence on the temperature o
order parameters and the fraction of rigid segments on
spacers forj51 andnm54. The numberns of segments on
the spacer is changed from~a! to ~c!: ~a! ns54; ~b! ns56;
~c! ns512. As shown in Fig. 6~b!, we find a first-order phase
transition between two different nematic phases at a crit
temperature. At the nematic phase on the high tempera
side~weakly nematic phase!, the fractionx of rigid segments
on the spacers is small and the rigid segments on the spa
are slightly ordered. In the other nematic phase on the
temperature side~highly nematic phase!, the rigid segments
on the spacers and the mesogens are strongly ordered. F
7~a! shows the phase diagram on the temperature-sp
length plane forj51. The solid line shows the isotropic
weakly nematic phase transition, where the NIT tempera
TNI decreases with increasingns and the spacers play a sof
ening role. The dotted line shows the isotropic–highly ne
atic phase transition, where theTNI slowly increases with the
spacer length and the spacers play a stiffening role. At m
combinations of temperature and the spacer length, the e
librium state of the MLCP is a single uniform phase; isotr
pic, weakly nematic, highly nematic. These regions are se
rated by two-phase coexistence curves. We also find
triple point where these three phases coexist. The we
nematic–highly nematic phase transition line extends fr
the triple point~TP! to the critical point~CP! at which the
properties of the two different nematic phases become in
tinguishable and thus the phase transition disappears.
transition line is similar to the gas-liquid phase transition li
in the temperature-pressure plane. The dependence o

FIG. 5. Dependence on the interaction ratioj[nss/nmm of the
order parameterS with nm54 andns56.
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order parameters along the coexistence curve on the sp
length are shown in Fig. 7~b!. On passing through the triple
point the order parameters undergo large discrete chang

In Fig. 8, we show the orientational order parameterS
plotted against temperature for various values of the ene
differencee between the straightened and bent bonds w
nm54 andns510. The smaller values ofe correspond to the
more flexible spacers. For large values ofe, the order param-

FIG. 6. Dependence on the temperature of the order param
and the fraction of rigid segments on the spacers forj51. The
numberns of segments on the spacer is changed from~a! to ~c!: ~a!
ns54; ~b! ns56; ~c! ns512.
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eter is sharply increased with decreasing temperature du
the nematic ordering not only of mesogens but also of sp
ers and so the system shows the properties of the hi
nematic phase. As the value ofe is decreased, the NIT tem
perature is decreased and the order parameter is slowl
creased with decreasing temperature. The system show
weakly nematic phase. The flexibility of spacers strongly
fects the NIT temperature and the nematic ordering.

V. CONCLUSION

We have theoretically studied the nematic-isotropic tr
sitions of MLCPs which consist of rigid mesogens and sp
ers with various degrees of flexibility. The theory takes in
account both the nematic ordering of mesogens and the
tial ordering of spacer segments in the nematic phase.
study the nematic ordering of the MLCPs depending on
spacer length, the flexibility of the spacers, and the stren
of anisotropic attractive interactions. The main conclusio
obtained through this study are as follows.

~1! The theory predicts two different nematic phases. O
is a weakly nematic phase, or a softening region, where

FIG. 7. ~a! Phase diagram on the temperature-spacer lengtns

plane forj51. The solid line shows the isotropic–weakly nema
phase transition and the dotted line shows the isotropic–hig
nematic phase transition. The weakly nematic–highly nem
phase transition line extends from the triple point~TP! to the critical
point ~CP!. ~b! Order parameters calculated along the coexiste
curve.
to
c-
ly

in-
the
-

-
-

ar-
e

e
th
s

e
e

fraction of straightened segments on the spacers is small
most spacer chains are only slightly ordered. The wea
nematic phase is mostly formed by the ordering of m
sogens. As the result of this, theTNI decreases with increas
ing the spacer length. The other is a highly nematic phase
a stiffening region, where the number of straightened s
ments on the spacers is larger than the axial ratio of m
sogens. The straightened segments on the spacers an
mesogens are highly ordered. The ordering of the mesog
is enhanced by the nematic ordering of the spacers. As
result of this, theTNI increases with increasing the spac
length. The MLCPs with sufficiently flexible spacers and t
MLCPs with short-semiflexible spacers favor the formati
of a weakly nematic phase, while the MLCPs with lon
semiflexible spacers promote the formation of a highly ne
atic phase.

~2! When the anisotropic interaction ratioj[nss/nmm is
small, the isotropic–weakly nematic phase transition l
continuously extends to the the isotropic–highly nematic o
on the temperature-spacer length plane. Whenj'1, how-
ever, the first-order phase transition between the two dif
ent nematic phases takes place at a critical temperature
the phase diagram of the temperature-spacer length pl
the isotropic–weakly nematic phase transition line
changed to the isotropic–highly nematic one at the tri
point, where the isotropic and two different nematic pha
coexist. The weakly nematic–highly nematic phase transit
line extends from the triple point to the critical point.

In this paper we focused on the nematic ordering of
MLCPs in melts. The theory will be extended to the pha
behaviors of solutions of MLCPs and mixtures of MLCP
with low-molecular-weight liquid crystals.

APPENDIX: LANDAU –DE GENNES EXPANSION

In this appendix, we focus on the vicinity of the NI
point. In order to obtain the approximate formulas of the N
temperatureTNI and the order parameterS, we derive the
Landau–de Gennes expansion of our free energy~3.17!. We
here assumen[nmm5nms5nss and the value ofx is a con-
stant for simplicity. The larger values ofx correspond to

ly
ic

e

FIG. 8. Orientational order parameterS plotted against tempera
ture for various values of the stiffness parametere for the spacer
with ns510 andnm54.
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stiffer spacers. The characteristic ratiol c of the semiflexible
spacers is given byl c5(11x)/(12x) for largens @14,35#.
Equations~3.6! and ~3.8! become

hm5nm~n1 5
4 !S, ~A1!

hs5nsx~n1 5
4 !S, ~A2!

respectively. Equation~3.11! can be expanded in theh i as

ln I 0@h i #5
1

10
h i

21
1

105
h i

32
1

700
h i

41•••. ~A3!

Substituting Eq.~A3! into Eq. ~3.17!, we obtain the nematic
free energy as an expansion in the order parameterS:

bFnem/n5~n1 5
4 !~AS22BS31CS4!, ~A4!

A[ 1
2 ~12 1

5 a1h!, ~A5!

B[ 1
105a2h2, ~A6!

C[ 1
700a3h3, ~A7!

a1[~12p!21p2x2, ~A8!

a2[~12p!31p3x3, ~A9!

a3[~12p!41p4x4, ~A10!

with

h[~n1 5
4 !~nm1ns!. ~A11!

The h is given as a function of temperature through t
anisotropic interactionn which is inversely proportional to
temperature. The equilibrium value ofS is given by mini-
mizing the free energy. The discontinuous phase transi
occurs at the NIT pointhNI ,

hNI5
1

2S a1

10
1

a2
2

63a3
D 21

, ~A12!

where the free energy Eq.~A4! of the isotropic and nematic
phases is equal. Forh,hNI , we haveS50. For h.hNI ,
the order parameter is given by

S5
3B

8CF11A12
32AC

9B2 G
5

5a2

2ha3
F11A11

28a1a3

5a2
2 S 12

5

a1h D G . ~A13!

The order parameterSNI at the NIT point is given by

SNI5
B

2C
5

20a2

3a3
S a1

10
1

a2
2

63a3
D . ~A14!

The order parameterS starts atSNI and gradually approache
1 with increasingh ~or decreasing temperature!. From Eqs.
~A11! and ~A12!, the NIT temperature is given by
n

TNI5
Ua

kB
S 12p

nm
hNI2

5

4D 21

. ~A15!

For T,TNI , the nematic phase becomes stable. For su
ciently flexible spacers (x50), the NIT temperatureTNI de-
creases with increasing the spacer lengthns , where the spac-
ers play a softening role. For stiffer spacers, or larger val
of x, the temperatureTNI has a minimum as a function of th
spacer length. At large values ofns , the temperatureTNI
increases with increasingns , where the spacers play a stif
ening role.

We here derive the approximate formulas for the N
temperature and the order parameter at theTNI for the fol-
lowing three cases. For MLCPs with sufficiently flexib
spacers, we can setx50 and so we obtain
a15(12p)2, a25(12p)3, and a35(12p)4. From Eq.
~A15!, the NIT temperature is given by

TNI5
4~Ua /kB!~12p!

5@p2~123.45/nm!#
. ~A16!

The NIT temperature is decreased with increasing the fr
tion p of spacer segments atp.123.45/nm . This tendency
agrees with the experimental results of a homologous se
of thermotropic polyesters based on 4,48-dihydroxy-
2,28-dimethylazoxybenzene and various alkanedioic acid@7#,
where the NIT temperature is decreased as the numbe
methylene groups in the spacer increases. The experime
data show an odd-even effect, however, we neglect the pa
effects@41,42# in this paper. The order parameterSNI at the
NIT point is decreased with increasingp as

SNI50.772~12p!. ~A17!

For rigid rods without spacer chains, we can setp50 and
a15a25a351. The value ofh at the NIT point ishNI
5315/73 and so we obtain

TNI5
4~Ua /kB!nm

5~3.452nm!
, ~A18!

and SNI50.772. TheTNI increases with increasingnm and
diverges atnm53.45. When the axial rationm of the me-
sogens is larger than 3.45, the nematic phase is stable a
temperatures. For larger values ofnm , the repulsive interac-
tion between rigid rods dominates and the attractive inter
tion plays only an auxiliary role in the NIT and so theTNI
diverges@17,23,38#.

When p51, we can obtain the formula for semiflexibl
polymers without mesogen segments@35#. The stiffness of
the polymer is controlled byx[nr /ns . From Eq.~A15!, we
obtain

TNI5
4~Ua /kB!ns

5~3.45/x22ns!
, ~A19!

andSNI50.772x. The temperatureTNI is increased with in-
creasingns at ns,3.45/x2. For long-semiflexible chains (x
!1), the order parameter at the NIT point is small and
transition becomes mostly second order. This result qua
tively agrees with the properties of the NIT for the elas
wormlike chain@24#.
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