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Weakly nematic—highly nematic phase transitions in main-chain liquid-crystalline polymers
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A mean field theory is introduced to describe the nematic-isotropic phase trangkibisof main-chain
liquid-crystalline polymergMLCPs) which consist of rigid mesogens and spacers with various degrees of
flexibility. We here assume that two neighboring bonds on the spacers have either bent or straightened con-
formations and the straightened conformation gives rise to a rigid rodlike shape. The theory takes into account
not only the nematic ordering of mesogens but also the partial ordering of spacer segments in the nematic
phase. On the basis of the Onsager type excluded volume interactions and the Maier-Saupe model for
orientational-dependent attractive interactions between rigid segments, we derive the free energy of the MLCPs
in melts. The NIT temperature, the order parameter of mesogens, and that of spacers are examined as a
function of the spacer length, the flexibility of spacers, and the strength of the anisotropic interactions. We also
derive the Landau—de Gennes expansion of our free energy. We find that the NIT tempEgatfra MLCP
with semiflexible spacers has a minimum as a function of the spacer lepgtt small values ohg, we have
a weakly nematic phase which is mostly formed by the ordering of the mesogens and the spacers play a
softening role. At large values of;, we have a highly nematic phase where the straightened segments on the
spacers and the mesogens are highly ordered and the spacers play a stiffening role. The two different nematic
phases are discussed in the phase diagrams of the temperature-spacer lengtB J0&3e651X98)03007-4

PACS numbgs): 61.30.Cz, 64.70.Md, 61.82.Pv

I. INTRODUCTION with flexible and rigid segments, we must consider that the
two constituent monomers differ in flexibilifyd0—34. Some
Thermotropic liquid-crystalline polymers have been in-years ago, based on the Matheson-Flory theory for MLCPs
vestigated as new materials with remarkable mechanical, o49], Vasilenkoet al.[30] calculated the free energy of ML-
tical, and electrical properties. Main-chain liquid-crystalline CPs, in which they take into account the partial ordering of
polymers(MLCPs) consist of rigid mesogens connected by flexible spacers and focused on the NIT in athermal melts.
spacers with various degrees of flexibility, such as methylen&/ang and Warnef32] presented a molecular model to de-
and ethylene glycol groups. The flexibility of the MLCP can scribe nonhomogeneous MLCPs, in which the MLCP is
be regulated by using different chemical structures or differcomposed in sequence of rigid rodlike mesogen units and
ent length of the mesogens and spacers. The performancesspgacers denoted by a wormlike model. A lattice theory pro-
the MLCP and the nematic-isotropic phase transitiNiiT)  posed by Flonf14] has considered the isotropic solution of
are closely related to these molecular paramdtbrs]. semiflexible polymer chains in which two neighboring bonds
Some experimental studies have suggested that the spam the chain have either bent or straightened conformations.
ers play an important role in determining the degree of orgaTo describe the NIT of the semiflexible polymers, we re-
nization in a liquid-crystalline mesophagd—10. NMR  cently presented a simple mean field model combining the
studies on copolyester&4,4'-dihydroxy, «, «'-dimethyl-  Flory theory with the Maier-Saupe model for the orientation-
benzalazingover a wide temperature range have addressedependent attractive interactions between straightened bonds
the existence of strong correlations between the mesogefss].
and spacers in the nematic ph&2e]. Then the accounting In this paper we extend the previous mo@igb] to the
for the partial ordering of spacers in the nematic phase isnelts of MLCPs, which consist of rigid mesogens and spac-
necessary in the theoretical treatment of MLCP systems. ers with various degrees of flexibility. We here assume that
Liquid crystals of low molecular weight are modeled by the two neighboring bonds on the spacers have either bent or
rigid rodlike molecules interacting with each other throughstraightened conformations and the straightened conforma-
the hard-core repulsiorfd1] and the attractive intermolecu- tion gives rise to a rigid rodlike shape. The theory takes into
lar interactiong12,13. The problems of the liquid crystal- account both the nematic ordering of mesogens and the par-
linity in the systems containing liquid-crystalline polymers tial ordering of spacer segments in the nematic phase. On the
are treated by several theoretical models such as lattice mo#lasis of the Onsager theory for hard-core repulsive interac-
els[14-19, elastic wormlike chain modelR0-27, freely  tions [11] and the Maier-Saupe model for orientational-
jointed modelq 28], and persistent chairj29]. These theo- dependent attractive interactiof$2,13 between straight-
ries, however, cannot describe the orientational ordering oéned segments, we derive the free energy of the MLCPs in
spacers in a nematic phase because the model polymers canelts. The nematic-isotropic transitions, the order parameter
sist of homogeneous chains. In order to describe the MLCPsf mesogens, and that of spacers are examined as a function
of the spacer length, the flexibility of spacers, and the
strength of the anisotropic interactions. We also derive the
* Author to whom correspondence should be addressed. Landau—de Gennes expansion of our free energy.
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bggtn((jflsexible) /’stt)lé’eg%gtened {rigid) BF bene=Nrt(BF0) = Scomp/Ke — A Scont/Kg 2.2

where f=1/kgT, T is the absolute temperaturkg is the
Boltzmann constantf, is the local free energy change
needed to straighten a bent bond, andshows the number
of rigid segments on spacers. The second term in(E@g) is
mesogen spacer the combinatorial entropy related to the number of ways to

_ o ) selectn, segments out of the numbag of the spacer seg-
FIG. 1. Model of a main-chain liquid-crystalline polymer ments and is given by

(MLCP). The repeating unit in the MLCP consists of rigid-

mesogenic groups whose axial rationig and spacer groups con- ng!
taining ng segments. The total number of segments on the MLCP is Scomb/Kg=t lnn'(n——n)"
n=(n,+nyt, wheret is the number of repeating units. The sym- reAtso T

bols ® and O show the segments on the straightened and benBy using Stirling’s approximation, Eq2.3) can be rewritten
bonds on the spacers, respectively. as

(2.3

The paper is organized as follows. We first describe the

free energy of MLCPs in melts, in which we take into ac-

count the three physical parameters; the fraction of straightynere

ened segments on the spacers, the orientational order param-

eter of mesogens, and that of spacers. In Sec. Ill, by Xx=n,/ng (2.5

minimizing the free energy, we obtain the values of these

three parameters in thermal equilibrium conditions. In Secshows the fraction of rigidstraightenel segments on the

IV we show the detailed numerical results. In the Appendix,spacers. The third term in Eq2.2) shows the change in

Landau—de Gennes expansion of our free energy is deriveegbnformational entropy of chains. According to Flory’s lat-

and the approximate formulas for the NIT temperature andice theory, the conformational entroy,,{ m] of a flexible

the order parameter are given as a function of spacer lengtishain withm flexible segments is given 4y37]

the flexibility of spacers, and temperature. B
mzz—1)M2

gexpgm—1)

Scomb’Kg=—tndx In x+(1—x)In(1—x)], (2.9

Seonf M]/kg=1In , (2.6

Il. FREE ENERGY FOR MELTS OF MAIN-CHAIN

LIQUID-CRYSTALLINE POLYMERS _ _ o _
wherez is the lattice coordination number aidis the sym-

We consider a melt of a main-chain liquid-crystalline metry number of the chain. Equati¢®.6) is the entropy gain
polymer. The repeating units in the MLCP consist of a rigid-to bring a chain from the hypothetical crystalligstraight-
mesogenic unit with axial ratio,, and spacer units which ened state to a flexible amorphous state. When itheseg-
have the numbeng of segments. The total number of seg- ments out of then, segments on a flexible spacer are re-
ments on the MLCP is=(ny,+ns)t, wheret is the number  placed by rigid segments, we have the conformational
of repeating units(See Fig. 1.In order to take into account entropy change\ S, which is given by
the partial orientational ordering of spacers in a nematic
phase, we here assume that the two neighboring bonds on the AScon= Scont (Ns— N )t]— Seond Nst ] (2.7
spacers have either bent or straightened conformations and
the conformational free energy of the straightened bond ighis entropyA S,y was omitted in the earlier work35).
|€o| less than that of the bent bonds. For example, the energ§ubstituting Eq(2.6) into Eq. (2.7) we obtain
difference between the trans and the gauch state-efCC N [z—1\mt
bonds onn-alkanes gives values of the order of the thermal ASeoni/Kg = — In| — (_) _
energy[36] and so the straightened state of the bonds is Ns—ng\ €
energetically favoredhowever, it is entropically unfavor-
able. To describe the nematic-isotropic phase transition irf '0M Eds.(2.4) and(2.8), the free energy2.2) can be ex-
the MLCP, we here assume that the straightened conform&essed as
tion gives rise to a rigid rodlike shape. Then the orientational
ordering(nematic behavigrof the straightened bonds on the BFpen=NP
spacers as well as the rigid mesogens can be induced by both
the excluded volume interactions and the orientational- 1
dependent attractive interactions. Hereafter we call the seg- — —In(1—x)+xInx+(1—x)In(1—x)
ments in straightened bonds and that in bent bonds “rigid” ngt
and “flexible” segments, respectively. (2.9

The free energy of the MLCP in melts can be given by
where

(2.9

z—-1
xBfo+xIn .

F=Fpentt Frem- (2.2
p=ng/(n,+ng)=ngt/n (2.10
The first termF .. Shows the free energy change needed to
straighten bent bonds on the spacers. In our systEs,is  shows the fraction of the spacer segments on the repeating
given by unit.
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The second ternfr o in Eg. (2.1) shows the free energy lll. NEMATIC ORDERING OF MESOGENS
for the nematic ordering. On the basis of the excluded vol- AND SPACERS
ume interactions[11] and the orientational-dependent
(Maier-Saupg interactions[12,13, we consider three cou-
pling terms of the anisotropic interactions. L&t,,, be the
orientational-depender{Maier-Saupg interactions between
mesogen segmentsns be that between a mesogen and asogen segments is determined by the free en@d? with
rigid segment on spacers, amg, be that between rigid seg- ; o - ?

; - respect to this function:oF e/ f () 15 s =0. This leads

ments on spacers. The volume fractignof the rigid seg- : i s
ments on the spacer is given by to the integral equation

IN47f(0)=Cpt Nl VimmSm(1—P) + vimsSspX]Po(C0oS )

By minimizing the free energy2.1), we can obtain the
values of the order paramete8g, S, and the fractiorx in
thermal equilibrium conditions.

The orientational distribution functiof,,(8) of the me-

g,=nt/n=xp. (2.11
On the basis of both the Maier-Saupe model and the On- ~ (17 p)J sin y(6,6")fm(67)d €’
sager theory, the free energy of the nematic ordering is given
by [38] 4 pr sin y(&,a’)fs(ﬁ’)dﬂ’}. 3.1
(1-p) - o . o
BFperi=n N fn(O)Indxf (6)dQ Similarly, the distribution functionfs(#) of the rigid seg-
m

ments on the spacers is determined[la'Fnemlﬁfs(t9)]x,fm

px 1 ) ) =0. We then obtain
+n— fs(e)ln47-rfs(0)dﬂ—Eymmsm(l—p)
r

IN4mfy(0)=Cst N[ v Sn(1—P)+ vsSspX]Po(COS 6)
~ UmnsSnSs(1-p)px— %vsﬁﬁpzxz

—;nr (1—p)f sin y(0,0")f,(6')dQ’
+(Pmm_1)(1_p)2+2(Pms_1)(1_p)pX

+pxj sin y(0,0")f4(0')dQ’ |, 3.2

+(pss— 1)p2X2 ) (2.12

whereC,,, andC, are constants, which are determined by the

wheredQ =27 sin 6d6, andé is the angle between the rigid Normalization conditions

segments and the director of the orienting field. Th¢6)

andf¢(8) show the orientational distribu_ti(_)n functions of the f f.(0)do=1, (3.3
mesogen segments and that of the rigid segments on the

spacers, respectively. The first two terms represent the de- o

crease of entropy due to the nematic ordering of the mel=m,s. We here expand the kernel sjin Legendre poly-
sogens and the rigid segments on the spacers. The orientdmials:

tional order paramete$,,, of the mesogen segments is given

by iny=" 27 b, (cos §)Py(cos 6" (3.9
sin y= R ,(cosf)P,(cosb’). .
Sm:f P,(cos 0)f(6)dQ, (213  Substituting Eq(3.4) into Egs.(3.1) and(3.2), we obtain the

orientational distribution functions

and the orientational order parametes of the rigid seg- 1
ments on the spacers is given by f(0)= 2_qu 7mP2(cos )], (3.5
m
Ss=f Pa(cos 6)f4(0)dQ, (2.14 Nn=Nel (Vimt 2)Sm(1=P) + (Vs 3)SsPX] (3.6

_ for the mesogen segments and
where P,(cos6)=3(cog6—1/3)/2. The last three terms in

Eqg. (2.12 show the excluded volume interactions between 1
rigid segments and the functign;(i,j=m,s) is given by fs(0) = >—exr nsP;(cos 0)], 3.7
[11] s

4 nsEnsX[(Vms+%)Sm(l_p)"'(vss"_%)sspx] (3.8
ii=— sin y(6,0")f,(0)f;(6')dQdQ’. (2.1
Pi Wf J (0.0T(OT(67) 213 for the rigid segments on the spacers, where the constants
Z;(i=m,s) are determined by the normalization condition

In the isotropic phase, we ha¥g(0) =1/(47) andp;;=1. (3.9. The termsy;; and 5/4 in Egs(3.6) and (3.8) corre-
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spond to the attractive and excluded volume interactions be- 5
tween rigid segments. From Eq&.3), (3.5, and(3.7), the pii=1-35SS;, (3.16
constantz; is given by
7 =2 ' 39 i=m,s. Substituting Eqs(3.195 and (3.16 into Eq. (2.12,
m=27 ol 7] 39 the free energy for the nematic ordering is given by
Zs=27l [ 7], (3.10 5
_ 21 \2
where the functior o[ 7] is defined as BF nem/N= 5| Ymmt 7 Sh(1=p)
— ! 3 S2 1\19 S 1 > 2 ~2,,2
Lol mi]= 0[z(co 6—3)]%exd 7 P,(cos 6)]d(cos 0), +| vmst 7/ P(1=P)XSSs+ 5| st 7| SIp7
(3.11 1
-p p
g=0,1,2 .... Substituting Egs(3.5 and (3.7) into Egs. e InTol 7lm]—n—Sm'o[ 7s]- (317

(2.13 and(2.14), we obtain two self-consistency equations

for the two order parametef;,, and Sg: The fractionx of rigid segments on the spacers is deter-
_ mined by minimizing the free enerdg®.1) with respect to:
Sm=1al 7m]/1 o[ 7m], (312 (9F/9x)s s, =0. From Eqs(2.9 and(3.17), we obtain

Ss= 1l 7s]/1ol 7], (3.13 . ]
(vsst DPXK+ (vimst §)(1—P)SySs—D(x) =0,
and the average value of the order parameters is given by (3.18
S=Sp(1-p)+Spx. (3.19  with
The functiono;= [f;(6)In4=f(6)dQ and p;; in Eq. (2.12 X 1
are now given as a function of order parame®ysandS; as D(x)=In + >0, (3.19
follows: (1=x)\]  tng(1—x)
oi=nS—Inlg 7], (3.15  and the solution fofs; is given by
|
1 5 5 2 5
Ss:—s —| VmsT Z (1-p)Snt Vst Z (1=p)Sn| +4| vest Z pxD(X) (, (3.20
2| vt 2 pXx
|
where\ is defined as wheresy(= kglhwy) is the local entropy loss ang)(<0) the

energy change needed to straighten a bent Haafl The
e larger values ofj correspond to the stiffer spacers. Thg
NE(ﬁ) exd — Bfol. (3.2) s defined aswo=w;/w, Where w;(w,) is the number of
states of a straightenetbend bond. If the segments are
placed on a lattice of coordination numberwe havew,
=1/(z—2). The stiffness of the spacer is controlled by the
€o- The most flexible spacer chain is realized whegs-0.
Substituting Eq(3.23 into Eq.(3.21) we obtain

By solving the coupled equation€3.12), (3.13, and
(3.20, we can obtain the values of the orientational order
parameterss,,, S, and the fractiorx of rigid segments on
the spacers as a function of temperature. From(&Q0 the
order parameteS; is given as a function 0§,, andx and so
we only solve the coupled equatio(®&12 and(3.13 for S,
andx. In the isotropic phaseS,,=S;=0), the value of is A= wexf — Beo], (3.249
given byD(x)=0:

A w=el[(z—1)(z—2)]. The free energy per unit segment of
X N Texg ng1—x)]" (322 our system can be expressed as

We further split the local free energy differentgin Eq.
(3.2 into two parts: BF/n=pBh—s/kg, (3.29

fo=€— TS, (3.23  where the entropy is given by
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+x In x|+

5
me+ Z

+2( Vst g) SnSsp(1—p)x+

1-p
Nm

In |o[77m]_n£S|n Lol 7s],

andh is the enthalpy:

—xIn w— nitln(l—x)+(1—x)ln(1—x)

S (1-p)?

Vgt Z

Bh=BeopX—3(vmmt 3)S2(1—P)?— (Vmst 3) SnSsP
X(1—p)X—3(vsst 3)S5P?X2. (3.27)

Whenp=0, we obtain the free energy for rigid rodlike mol-
ecules without spacer chaih38]:

1 5 5 1
BFnem/anE me+Z Sm_n_lnlo[nm]- (3.28
m

In our numerical calculations, we here define the ratio
of the anisotropic interaction as
E=ved vm, (3.29

and assume that the orientational-dependent interatign
between mesogen and spacer segments is proportional to the
square root of the product of,,,, and v [39,40:

Vmns= DV VmmPss (3.30

whereb is the constant. We then obtain
Vss= EVmm, (3.3)
Vms=b \/Eme- (3.32

The orientational-dependent interaction parametgy, be-
tween rigid-mesogen segments is given to be inversely pro-
portional to temperaturgl3]:

me:Ua/kBT. (333)

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we calculate the equilibrium values of the
order parameter§,,, S;, and the fractiorx of rigid seg-
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FIG. 2. Order parametelS,, (solid line), S; (dash-dotted ling
the average order parameg(short-dashed lineand the fractiorx

ments on the spacers as a function of temperature. In thelotted ling of rigid segments on the spacers plotted against the

numerical calculations of Sec. lll, we here define

reduced temperatur@/Ty, with £€=0.01,

n,=4, andt=100.

=|¢y|/U,. The values ofe, and U, are of the order of The numben of segments on the spacer is changed ftanto (c):
thermal energy. In the following calculations we use (8 ns=4; (b) ng=8; (c) ng=14.

=2, 0=0.01, b=1, andt=100 for a typical example.
Figure 2 shows the order paramet&s, Sg, S, and the
fraction x as a function of the reduced temperatdvd y, ,

rameter Sg of rigid segments on the spacers. The short-
dashed line shows the average-order param@tand the

whereTy;, is the NIT temperature. The curves are calculateddotted line corresponds to the fractirrf rigid segments on
with ¢=0.01 andn,,=4. The numbeng of segments on the the spacers. As temperature is decreased, the valudrnf

spacer is changed froif@) to (c): (a) ng=4; (b) ng=8; (c)
ns=14. The solid curve refers to the order param&grof

creases and discontinuously changes atTtge For small
values ofng [Fig. 2(a)], the values ok andS; in the nematic

the mesogens and the dash-dotted line shows the order pphase are small and the rigid segments on the spacers are
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FIG. 3. Comparison of the theoretical calculations with the ob-
served order parameters for polyestefks

slightly ordered. The nematic phase is mostly stabilized by
the orientational ordering of mesogens. For large values of
ng [Fig. 2(b)], however, the value of becomes large and the
order paramete®; is sharply increased with decreasing tem-
perature belowly,, where the nematic ordering is enhanced
by the ordering of the spacers. As shown in Fi¢c)2the

rigid segments on the long spacers and the mesogens are
highly ordered in the nematic phase, where the number of
rigid segments on the spacers becomes larger than the axial
ratio (n,,=4) of the mesogens. The number of rigid seg-
ments on the spacers is given i, . For example, we have
xng=9.3 atT/Ty,=0.9.

Figure 3 shows the comparison of the theoretical calcula-
tions with the observed order parameters. The open circles
(triangles show the order parameter of mesogésgacers
reported for polyesters of 2@limethyl-4,4-dihydroxy-
azoxybenzeng7]. Whenng =6, the calculated order param-
eters are mostly independent on temperature and qualita-
tively describe the experimental data. When the spacer
length is large, the calculated order parameters are sharply
increased with decreasing temperature.

Figure 4a) shows the phase diagram on the temperature-
spacer length plane fof=0.01. The solid line shows the
coexistence curve for the isotropic and nematic phases. At
small values ofhg, the NIT temperaturdy, decreases with
increasing the spacer lengthy. At large ng, however, the 0.02
Tni Slowly increases with increasing. In this region, the
spacers increase the degree of nematic ordering in the ML-

)((: I::ZI C'jgl::j ?osngomse t?ce) e?(:gtegnrz;aeriws/t:,r;?gﬁngfJ;?Sgoonf FIG. 4. Dependence on the spacer Iength of the NIT temperature
. (a), the order parameters at the NIT poifif), and the entropy
ns, the values ok and Sg along the coexistence curve are . -
S .~ change at the NIT poinfc) for £=0.01.
small and the rigid segments on the spacers are only slightly
ordered at thel'y,. The nematic phase is mostly stabilized ers play astiffening role and the nematic ordering of the
by the orientational ordering of mesogens. In this sense, thgystem is enhanced by the partial ordering of the spacers. We
spacer components playsafteningrole. The free energy of here call this region a highly nematic phase. These two dif-
the system is minimized by the softening rather than by thderent nematic phases have also been predicted by Vasilenko
ordering of the short spacers. We here call this region &t al.[30]. They predicted the phase transition between the
weakly nematic phase. Further increasing the spacer lengtivo different nematic phases depending on the fraction of
ns, the values of the fractior and the order paramet&;  bent bonds on the spacers and the fraction of spacer seg-
along the coexistence curve are sharply increased with irments in the repeating unit. As shown in Figcy the en-
creasingns. The long spacers promote the degree of nematit¢ropy change\sy,/(kgn) per unit segment at the NIT point
ordering in the MLCPs and so the NIT temperaturg, decreases with increasing the spacer lemgtm the weakly
slowly increases with increasing,. In this sense, the spac- nematic phase, or the softening region. However, the entropy

Asyp/ kpm
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FIG. 5. Dependence on the interaction ragis vss/ vy, Of the
order paramete$ with n,,=4 andns==6.

change increases with increasing in the highly nematic
phase, where the nematic ordering of the spacers gives large
contributions to the latent entropy at tAg,. The weakly
nematic phase continuously changes to the highly nematic
one with increasing spacer length.

Figure 5 shows the dependence on the interaction ratio
é=vss/ v Of the order paramete® with n,=4 andng
=6. The value of depends on the chemical structure of the
polymer molecules. As the strength of the anisotropic inter-
actionvg between the spacers is increased, the NIT tempera-
ture and the order parameter increase. Above a critical value
of £(=0.75), we find a first-order phase transition between
two different nematic phases.

Figure 6 shows the dependence on the temperature of the
order parameters and the fraction of rigid segments on the 1.0 : : .
spacers fog=1 andn,,=4. The numbeng of segmentson [T~ ———. - S  © nm=4
the spacer is changed frofa) to (c): (a) ng=4; (b) ng=6; 0s L 3 > ns =12 |
(c) ng=12. As shown in Fig. @), we find a first-order phase el " -
transition between two different nematic phases at a critical "“'":.;: s @=0.01
temperature. At the nematic phase on the high temperature 0.6 Tl =2 T
side (weakly nematic phasethe fractionx of rigid segments
on the spacers is small and the rigid segments on the spacers 04 | i
are slightly ordered. In the other nematic phase on the low
temperature sidéhighly nematic phagethe rigid segments
on the spacers and the mesogens are strongly ordered. Figure
7(a) shows the phase diagram on the temperature-spacer
length plane foré=1. The solid line shows the isotropic— 0.0 . .
weakly nematic phase transition, where the NIT temperature 0.9 10
Ty decreases with increasimg and the spacers play a soft- T/ Ty
ening role. The dotted line shows the isotropic—highly nem-
atic phase transition, where tlg, slowly increases with the FIG. 6. Dependence on the temperature of the order parameters
spacer length and the spacers play a stiffening role. At mosind the fraction of rigid segments on the spacers&erl. The
combinations of temperature and the spacer length, the equiumberng of segments on the spacer is changed ftajrto (c): (a)
librium state of the MLCP is a single uniform phase; isotro-ns=4; (b) ng=6; (c) ng=12.
pic, weakly nematic, highly nematic. These regions are sepa-
rated by two-phase coexistence curves. We also find therder parameters along the coexistence curve on the spacer
triple point where these three phases coexist. The weakliength are shown in Fig.(B). On passing through the triple
nematic—highly nematic phase transition line extends fronpoint the order parameters undergo large discrete changes.
the triple point(TP) to the critical point(CP) at which the In Fig. 8, we show the orientational order parameser
properties of the two different nematic phases become indisplotted against temperature for various values of the energy
tinguishable and thus the phase transition disappears. Thiifferencee between the straightened and bent bonds with
transition line is similar to the gas-liquid phase transition linen,,=4 andngs=10. The smaller values &fcorrespond to the
in the temperature-pressure plane. The dependence of tieore flexible spacers. For large valuesothe order param-

11
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FIG. 8. Orientational order paramet®plotted against tempera-

_‘?s ______ ture for various values of the stiffness parametdor the spacer
& with ng=10 andn,,=4.
S
_ fraction of straightened segments on the spacers is small and
S most spacer chains are only slightly ordered. The weakly
N LEPPPEEY nematic phase is mostly formed by the ordering of me-
T sogens. As the result of this, tAg,, decreases with increas-
ing the spacer length. The other is a highly nematic phase, or
&=1 . a stiffening region, where the number of straightened seg-

ments on the spacers is larger than the axial ratio of me-
. sogens. The straightened segments on the spacers and the
14 18 mesogens are highly ordered. The ordering of the mesogens
is enhanced by the nematic ordering of the spacers. As the
result of this, theTy, increases with increasing the spacer
FIG. 7. (8 Phase diagram on the temperature-spacer length length. The MLCPs with sufficiently flexible spacers and the
plane foré=1. The solid line shows the isotropic—weakly nematic MLCPs with short-semiflexible spacers favor the formation
phase transition and the dotted line shows the isotropic—highiyof a weakly nematic phase, while the MLCPs with long-
nematic phase transition. The weakly nematic—highly nematisemiflexible spacers promote the formation of a highly nem-
phase transition line extends from the triple pdifi®) to the critical  atic phase.
point (CP). (b) Order parameters calculated along the coexistence (2) When the anisotropic interaction ratie= veo/ v is
curve. small, the isotropic—weakly nematic phase transition line
continuously extends to the the isotropic—highly nematic one
eter is sharply increased with decreasing temperature due tin the temperature-spacer length plane. Wgerl, how-
the nematic ordering not only of mesogens but also of spacever, the first-order phase transition between the two differ-
ers and so the system shows the properties of the highlgnt nematic phases takes place at a critical temperature. In
nematic phase. As the value efis decreased, the NIT tem- the phase diagram of the temperature-spacer length plane,
perature is decreased and the order parameter is slowly ithe isotropic—weakly nematic phase transition line is
creased with decreasing temperature. The system shows thbhanged to the isotropic—highly nematic one at the triple
weakly nematic phase. The flexibility of spacers strongly af-point, where the isotropic and two different nematic phases
fects the NIT temperature and the nematic ordering. coexist. The weakly nematic—highly nematic phase transition
line extends from the triple point to the critical point.
In this paper we focused on the nematic ordering of the
V. CONCLUSION MLCPs in melts. The theory will be extended to the phase
We have theoretically studied the nematic-isotropic tranPehaviors of solutions of MLCPs and mixtures of MLCPs

sitions of MLCPs which consist of rigid mesogens and spacWith low-molecular-weight liquid crystals.
ers with various degrees of flexibility. The theory takes into
account t_)oth the nematic ordering. of mesogens and the par-  AppeNDIX: LANDAU —DE GENNES EXPANSION
tial ordering of spacer segments in the nematic phase. We
study the nematic ordering of the MLCPs depending on the In this appendix, we focus on the vicinity of the NIT
spacer length, the flexibility of the spacers, and the strengtpoint. In order to obtain the approximate formulas of the NIT
of anisotropic attractive interactions. The main conclusiongemperatureTy, and the order paramet&, we derive the
obtained through this study are as follows. Landau—de Gennes expansion of our free en€sgy7). We

(1) The theory predicts two different nematic phases. Onéiere assume= v,,,= v,ms= vss and the value ok is a con-
is a weakly nematic phase, or a softening region, where thetant for simplicity. The larger values of correspond to
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stiffer spacers. The characteristic raltjoof the semiflexible Ua(1-p 5\ 1
spacers is given bi,=(1+x)/(1—x) for largeng [14,35. TN|:k—(n—7IN|— Z) (A15)
Equations(3.6) and (3.8) become BL M
For T<Ty,, the nematic phase becomes stable. For suffi-
ciently flexible spacersx=0), the NIT temperaturé, de-
creases with increasing the spacer lengthwhere the spac-
ers play a softening role. For stiffer spacers, or larger values
of x, the temperatur&y, has a minimum as a function of the
spacer length. At large values of, the temperaturdy,

1 1 1 increases with increasing,, where the spacers play a stiff-
|n|0[7]i]:E77i2+ ﬁ;nf‘— ﬁ)ﬂi‘l*”"'- (A3)  ening role.

We here derive the approximate formulas for the NIT
temperature and the order parameter atTke for the fol-
lowing three cases. For MLCPs with sufficiently flexible
spacers, we can setx=0 and so we obtain
BF nem/N=(v+3)(AS—BS*+CS"), (A4) a1=(1-p)>, a=(1-p)° andaz=(1-p)*. From Eq.

(A15), the NIT temperature is given by

Tm=Nm(v+3)S, (A1)
Ns=NX(v+3)S, (A2)

respectively. Equatiofi3.11) can be expanded in thg, as

Substituting Eq(A3) into Eq.(3.17), we obtain the nematic
free energy as an expansion in the order parantter

A=i(1-ta,y), (AS5) 4(U,/kg)(1—p)

B= ka7 (A6) " B[p—(1-3.45h)]"

The NIT temperature is decreased with increasing the frac-

(A16)

=1,.3
C= 55837, A7) ion p of spacer segments pt>1—3.45h,,. This tendency
1 N2 202 agrees with the experimental results of a homologous series
3=(1=p)"+ P, (A8) of thermotropic polyesters based on ‘4gihydroxy-
4 N3, 303 2,2 -dimethylazoxybenzene and various alkanedioic &€]d
3= (1=p)"+ P, (A9) where the NIT temperature is decreased as the number of
as=(1—p)*+p™®, (AL0) methylene groups in the spacer increases. The experimental

data show an odd-even effect, however, we neglect the parity
with effects[41,42 in this paper. The order parametgy, at the
NIT point is decreased with increasigas

7=(v+3)(Np+ny). (A11) S\ =0.7721—p). (A17)

The 7 is given as a function of temperature through the

anisotropic mteracuom _wr_uch is mversgly proportlongl.to a,=a,=as=1. The value ofy at the NIT point is 7y,
temperature. The equilibrium value & is given by mini- )
=315/73 and so we obtain

mizing the free energy. The discontinuous phase transition

For rigid rods without spacer chains, we canget0 and

occurs at the NIT pointyy , 4(U,/kg)Np,
TN=5E.45ny) " (A18)

_1(a1+ a; |\t (A12) (345" Nm)
NIT2\10" 63a) and Sy, =0.772. TheTy, increases with increasing,, and

) . . diverges atn,,=3.45. When the axial ratio,,, of the me-
where the free energy E¢A4) of the isotropic and nematic  gogens is larger than 3.45, the nematic phase is stable at all

phases is equal. Fop<<7ny,, we haveS=0. For 7>7ni,  temperatures. For larger valuesrgf, the repulsive interac-
the order parameter is given by tion between rigid rods dominates and the attractive interac-
tion plays only an auxiliary role in the NIT and so thg
. 3B 1+ _32AC diverges[17,23,38.
8C 9B2 When p=1, we can obtain the formula for semiflexible
polymers without mesogen segmen85]. The stiffness of
5a, \/ 28a,a;3 5 the polymer is controlled bx=n, /ng. From Eq.(A15), we
= 1+ 1+ 1-— (A13) obtain
2723 5a3 a7
4( Ua/kB)ns
The order paramete®y, at the NIT point is given by TN'_5(3.451$<2—nS) ' (A19)
B 20a,(a; aj andSy,;=0.77X. The temperaturd@y, is increased with in-
Sn=s== —+—]. (A14) : 2 iflayi i
2C 3a3\10 63a, creasingng at ng<<3.45k“. For long-semiflexible chainsx(

<1), the order parameter at the NIT point is small and the
The order paramete starts atSy, and gradually approaches transition becomes mostly second order. This result qualita-
1 with increasingn (or decreasing temperaturd=rom Eqgs. tively agrees with the properties of the NIT for the elastic
(A1l) and(Al12), the NIT temperature is given by wormlike chain[24].
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